3.497 \(\int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=117 \[ -\frac{2 b (a+b \sin (c+d x))^{3/2}}{3 d}-\frac{4 a b \sqrt{a+b \sin (c+d x)}}{d}-\frac{(a-b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{d}+\frac{(a+b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{d} \]

[Out]

-(((a - b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]])/d) + ((a + b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c +
 d*x]]/Sqrt[a + b]])/d - (4*a*b*Sqrt[a + b*Sin[c + d*x]])/d - (2*b*(a + b*Sin[c + d*x])^(3/2))/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.232252, antiderivative size = 117, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2668, 704, 825, 827, 1166, 206} \[ -\frac{2 b (a+b \sin (c+d x))^{3/2}}{3 d}-\frac{4 a b \sqrt{a+b \sin (c+d x)}}{d}-\frac{(a-b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{d}+\frac{(a+b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + b*Sin[c + d*x])^(5/2),x]

[Out]

-(((a - b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]])/d) + ((a + b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c +
 d*x]]/Sqrt[a + b]])/d - (4*a*b*Sqrt[a + b*Sin[c + d*x]])/d - (2*b*(a + b*Sin[c + d*x])^(3/2))/(3*d)

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 704

Int[((d_) + (e_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1))/(c*(m - 1)), x] +
Dist[1/c, Int[((d + e*x)^(m - 2)*Simp[c*d^2 - a*e^2 + 2*c*d*e*x, x])/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}
, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 1]

Rule 825

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(g*(d + e*x)^m)/
(c*m), x] + Dist[1/c, Int[((d + e*x)^(m - 1)*Simp[c*d*f - a*e*g + (g*c*d + c*e*f)*x, x])/(a + c*x^2), x], x] /
; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && FractionQ[m] && GtQ[m, 0]

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
 - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx &=\frac{b \operatorname{Subst}\left (\int \frac{(a+x)^{5/2}}{b^2-x^2} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=-\frac{2 b (a+b \sin (c+d x))^{3/2}}{3 d}-\frac{b \operatorname{Subst}\left (\int \frac{\sqrt{a+x} \left (-a^2-b^2-2 a x\right )}{b^2-x^2} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=-\frac{4 a b \sqrt{a+b \sin (c+d x)}}{d}-\frac{2 b (a+b \sin (c+d x))^{3/2}}{3 d}+\frac{b \operatorname{Subst}\left (\int \frac{a \left (a^2+3 b^2\right )+\left (3 a^2+b^2\right ) x}{\sqrt{a+x} \left (b^2-x^2\right )} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=-\frac{4 a b \sqrt{a+b \sin (c+d x)}}{d}-\frac{2 b (a+b \sin (c+d x))^{3/2}}{3 d}+\frac{(2 b) \operatorname{Subst}\left (\int \frac{-a \left (3 a^2+b^2\right )+a \left (a^2+3 b^2\right )+\left (3 a^2+b^2\right ) x^2}{-a^2+b^2+2 a x^2-x^4} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{d}\\ &=-\frac{4 a b \sqrt{a+b \sin (c+d x)}}{d}-\frac{2 b (a+b \sin (c+d x))^{3/2}}{3 d}-\frac{(a-b)^3 \operatorname{Subst}\left (\int \frac{1}{a-b-x^2} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{d}+\frac{(a+b)^3 \operatorname{Subst}\left (\int \frac{1}{a+b-x^2} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{d}\\ &=-\frac{(a-b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{d}+\frac{(a+b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{d}-\frac{4 a b \sqrt{a+b \sin (c+d x)}}{d}-\frac{2 b (a+b \sin (c+d x))^{3/2}}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.155927, size = 105, normalized size = 0.9 \[ \frac{-2 b \sqrt{a+b \sin (c+d x)} (7 a+b \sin (c+d x))-3 (a-b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )+3 (a+b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(-3*(a - b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]] + 3*(a + b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d
*x]]/Sqrt[a + b]] - 2*b*Sqrt[a + b*Sin[c + d*x]]*(7*a + b*Sin[c + d*x]))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 0.368, size = 312, normalized size = 2.7 \begin{align*} -{\frac{2\,b}{3\,d} \left ( a+b\sin \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}}-4\,{\frac{ab\sqrt{a+b\sin \left ( dx+c \right ) }}{d}}+{\frac{{a}^{3}}{d}\arctan \left ({\sqrt{a+b\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-a+b}}}} \right ){\frac{1}{\sqrt{-a+b}}}}-3\,{\frac{{a}^{2}b}{d\sqrt{-a+b}}\arctan \left ({\frac{\sqrt{a+b\sin \left ( dx+c \right ) }}{\sqrt{-a+b}}} \right ) }+3\,{\frac{a{b}^{2}}{d\sqrt{-a+b}}\arctan \left ({\frac{\sqrt{a+b\sin \left ( dx+c \right ) }}{\sqrt{-a+b}}} \right ) }-{\frac{{b}^{3}}{d}\arctan \left ({\sqrt{a+b\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-a+b}}}} \right ){\frac{1}{\sqrt{-a+b}}}}+{\frac{{a}^{3}}{d}{\it Artanh} \left ({\sqrt{a+b\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{a+b}}}} \right ){\frac{1}{\sqrt{a+b}}}}+3\,{\frac{{a}^{2}b}{d\sqrt{a+b}}{\it Artanh} \left ({\frac{\sqrt{a+b\sin \left ( dx+c \right ) }}{\sqrt{a+b}}} \right ) }+3\,{\frac{a{b}^{2}}{d\sqrt{a+b}}{\it Artanh} \left ({\frac{\sqrt{a+b\sin \left ( dx+c \right ) }}{\sqrt{a+b}}} \right ) }+{\frac{{b}^{3}}{d}{\it Artanh} \left ({\sqrt{a+b\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{a+b}}}} \right ){\frac{1}{\sqrt{a+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x)

[Out]

-2/3*b*(a+b*sin(d*x+c))^(3/2)/d-4*a*b*(a+b*sin(d*x+c))^(1/2)/d+1/d/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/
(-a+b)^(1/2))*a^3-3/d*b/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2))*a^2+3/d*b^2/(-a+b)^(1/2)*arct
an((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2))*a-1/d*b^3/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2))+1/d
/(a+b)^(1/2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))*a^3+3/d*b/(a+b)^(1/2)*arctanh((a+b*sin(d*x+c))^(1/2)/
(a+b)^(1/2))*a^2+3/d*b^2/(a+b)^(1/2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))*a+1/d*b^3/(a+b)^(1/2)*arctanh
((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 12.4489, size = 4676, normalized size = 39.97 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/24*(3*(a^2 + 2*a*b + b^2)*sqrt(a + b)*log((b^4*cos(d*x + c)^4 + 128*a^4 + 256*a^3*b + 320*a^2*b^2 + 256*a*b
^3 + 72*b^4 - 8*(20*a^2*b^2 + 28*a*b^3 + 9*b^4)*cos(d*x + c)^2 + 8*(16*a^3 + 24*a^2*b + 20*a*b^2 + 8*b^3 - (10
*a*b^2 + 7*b^3)*cos(d*x + c)^2 - (b^3*cos(d*x + c)^2 - 24*a^2*b - 28*a*b^2 - 8*b^3)*sin(d*x + c))*sqrt(b*sin(d
*x + c) + a)*sqrt(a + b) + 4*(64*a^3*b + 112*a^2*b^2 + 64*a*b^3 + 14*b^4 - (8*a*b^3 + 7*b^4)*cos(d*x + c)^2)*s
in(d*x + c))/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) + 3*(a^2 - 2*a*b +
 b^2)*sqrt(a - b)*log((b^4*cos(d*x + c)^4 + 128*a^4 - 256*a^3*b + 320*a^2*b^2 - 256*a*b^3 + 72*b^4 - 8*(20*a^2
*b^2 - 28*a*b^3 + 9*b^4)*cos(d*x + c)^2 - 8*(16*a^3 - 24*a^2*b + 20*a*b^2 - 8*b^3 - (10*a*b^2 - 7*b^3)*cos(d*x
 + c)^2 - (b^3*cos(d*x + c)^2 - 24*a^2*b + 28*a*b^2 - 8*b^3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(a - b
) + 4*(64*a^3*b - 112*a^2*b^2 + 64*a*b^3 - 14*b^4 - (8*a*b^3 - 7*b^4)*cos(d*x + c)^2)*sin(d*x + c))/(cos(d*x +
 c)^4 - 8*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) - 16*(b^2*sin(d*x + c) + 7*a*b)*sqrt(b*si
n(d*x + c) + a))/d, -1/24*(6*(a^2 + 2*a*b + b^2)*sqrt(-a - b)*arctan(-1/4*(b^2*cos(d*x + c)^2 - 8*a^2 - 8*a*b
- 2*b^2 - 2*(4*a*b + 3*b^2)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(-a - b)/(2*a^3 + 3*a^2*b + 2*a*b^2 + b
^3 - (a*b^2 + b^3)*cos(d*x + c)^2 + (3*a^2*b + 4*a*b^2 + b^3)*sin(d*x + c))) - 3*(a^2 - 2*a*b + b^2)*sqrt(a -
b)*log((b^4*cos(d*x + c)^4 + 128*a^4 - 256*a^3*b + 320*a^2*b^2 - 256*a*b^3 + 72*b^4 - 8*(20*a^2*b^2 - 28*a*b^3
 + 9*b^4)*cos(d*x + c)^2 - 8*(16*a^3 - 24*a^2*b + 20*a*b^2 - 8*b^3 - (10*a*b^2 - 7*b^3)*cos(d*x + c)^2 - (b^3*
cos(d*x + c)^2 - 24*a^2*b + 28*a*b^2 - 8*b^3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(a - b) + 4*(64*a^3*b
 - 112*a^2*b^2 + 64*a*b^3 - 14*b^4 - (8*a*b^3 - 7*b^4)*cos(d*x + c)^2)*sin(d*x + c))/(cos(d*x + c)^4 - 8*cos(d
*x + c)^2 - 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) + 16*(b^2*sin(d*x + c) + 7*a*b)*sqrt(b*sin(d*x + c) + a)
)/d, -1/24*(6*(a^2 - 2*a*b + b^2)*sqrt(-a + b)*arctan(1/4*(b^2*cos(d*x + c)^2 - 8*a^2 + 8*a*b - 2*b^2 - 2*(4*a
*b - 3*b^2)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(-a + b)/(2*a^3 - 3*a^2*b + 2*a*b^2 - b^3 - (a*b^2 - b^
3)*cos(d*x + c)^2 + (3*a^2*b - 4*a*b^2 + b^3)*sin(d*x + c))) - 3*(a^2 + 2*a*b + b^2)*sqrt(a + b)*log((b^4*cos(
d*x + c)^4 + 128*a^4 + 256*a^3*b + 320*a^2*b^2 + 256*a*b^3 + 72*b^4 - 8*(20*a^2*b^2 + 28*a*b^3 + 9*b^4)*cos(d*
x + c)^2 + 8*(16*a^3 + 24*a^2*b + 20*a*b^2 + 8*b^3 - (10*a*b^2 + 7*b^3)*cos(d*x + c)^2 - (b^3*cos(d*x + c)^2 -
 24*a^2*b - 28*a*b^2 - 8*b^3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(a + b) + 4*(64*a^3*b + 112*a^2*b^2 +
 64*a*b^3 + 14*b^4 - (8*a*b^3 + 7*b^4)*cos(d*x + c)^2)*sin(d*x + c))/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(c
os(d*x + c)^2 - 2)*sin(d*x + c) + 8)) + 16*(b^2*sin(d*x + c) + 7*a*b)*sqrt(b*sin(d*x + c) + a))/d, -1/12*(3*(a
^2 - 2*a*b + b^2)*sqrt(-a + b)*arctan(1/4*(b^2*cos(d*x + c)^2 - 8*a^2 + 8*a*b - 2*b^2 - 2*(4*a*b - 3*b^2)*sin(
d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(-a + b)/(2*a^3 - 3*a^2*b + 2*a*b^2 - b^3 - (a*b^2 - b^3)*cos(d*x + c)^
2 + (3*a^2*b - 4*a*b^2 + b^3)*sin(d*x + c))) + 3*(a^2 + 2*a*b + b^2)*sqrt(-a - b)*arctan(-1/4*(b^2*cos(d*x + c
)^2 - 8*a^2 - 8*a*b - 2*b^2 - 2*(4*a*b + 3*b^2)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(-a - b)/(2*a^3 + 3
*a^2*b + 2*a*b^2 + b^3 - (a*b^2 + b^3)*cos(d*x + c)^2 + (3*a^2*b + 4*a*b^2 + b^3)*sin(d*x + c))) + 8*(b^2*sin(
d*x + c) + 7*a*b)*sqrt(b*sin(d*x + c) + a))/d]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out